Benutzer:Ikosaeder/Konvektion

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Als Konvektion (von lat. convectum, Partizip Perfekt Passiv von convehere ‚zusammentragen‘, ‚zusammenbringen‘, ‚mitgetragen‘) wird die gemeinsame Bewegung einer Gruppe von Teilchen in einem Fluid verstanden. Diese Bewegung kommt dabei aufgrund einer äusseren Kraft zustande die auf diese Gruppe wirkt. Ist die einwirkende Kraft groß genugt, kann die Konvektion von aussen beobachtet werden. Diese sichtbare Bewegung eines Fluids durch Konvektion wird Strömung genannt.

Konvektionszellen in einem von unten beheizten Gefäß

Die treibende Kraft als Ursache für Konvektion ist in den meisten Fällen ein Druckgradient, welcher durch einen Dichteunterschied im Fluid entsteht. Die Dichteunterschiede resultieren aus Temperaturunterschieden oder Konzentrationsunterschieden. Das unterschiedliche Volumen gleicher Massen führt dann zu unterschiedlichem statischen Auftrieb.

Der Differenzdruck ist vom Dichteunterschied und der wirksamen Höhe h abhängig nach der Formel:

  • h: wirksame Höhe in m
  • g: Erdbeschleunigung in m/s²
  • : Dichte bei Temperatur 1
  • : Dichte bei Temperatur 2

Im Allgemeine wird zwischen

Beim Mitführen physikalischer Größen (z. B. Impuls oder Vortizität) oder von gelösten Stoffen wird auch von konvektivem Transport gesprochen. Auch Feststoffpartikel in Fluiden können auf diese Weise transportiert werden, siehe z. B. Wirbelschicht.

Bei erzwungener Konvektion tritt fast immer auch natürliche Konvektion auf, welche jedoch in den meisten technisch relevanten Fällen vernachlässigbar klein gegenüber der erzwungenen Konvektion ist.[1][2]

Werden die Dichteunterschiede durch unterschiedliche Stoffdichten hervorgerufen, wird dies chemische Konvektion, bei Lösungen auch solutale Konvektion, bei Salzlösungen auch haline Konvektion oder in Verbindung mit thermischer Konvektion auch thermohaline Konvektion genannt.

Die Marangoni-Konvektion ist eine Strömung, die durch Unterschiede der Grenzflächenspannung entsteht. Ursache für die unterschiedliche Grenzflächenspannung können z. B. Änderungen der Temperatur, der Konzentration gelöster Stoffe (z. B Detergentien) oder der Ladungsdichte (Elektrokapillarität) entlang einer Grenzfläche sein. Hierdurch strömt das Fluid entlang der Grenzfläche vom Ort erniedrigter Grenzflächenspannung in Richtung der lokal erhöhten Grenzflächenspannung. Folglich kommt es zu einer Reduktion des Gradienten der Oberflächenspannung. Eine Kenngröße für die Marangoni-Konvektion ist die Marangoni-Zahl.

Weitere treibende Kräfte sind Impulse, magnetische und elektrische Felder. Sie entstehen beispielsweise durch elektrische Spannungen oder Ströme. Der Impuls wird über die Grenzfläche auf das Fluid übertragen oder wirkt auf das Volumen des Fluids.

Übertragungs- und Austauschvorgänge

[Bearbeiten | Quelltext bearbeiten]

Bei der Konvektion werden physikalischen Größen transportiert und über die Grenzschicht zu angrenzenden Körpern oder Fluiden übertragen oder mit diesen ausgetauscht. Diese Vorgänge sind abhängig von

  • den Stoffeigenschaften, wie z. B. der Wärmeleitfähigkeit oder der Dichte,
  • der Form der Körper, wie z. B. Rohr, ebene Platte oder unregelmäßige Oberflächenformen und
  • der dadurch beeinflussten Strömung, die laminar oder turbulent sein kann.

Mit der Konvektion finden folgende Übertragungs- und Austauschvorgänge statt:

Treten chemische Reaktionen auf, werden die transportierten Größen zusätzlich beeinflusst. Es entstehen zusätzlich Entropie, Impuls und chemische Reaktionsprodukte. Des Weiteren kann die Wand als Katalysator wirken.

Einige der genannten Vorgänge, wie beispielsweise Erstarren und Verdampfen, finden meist oder nur bei gleichzeitigem Auftreten von Konvektion statt.


Konvektion ohne Stoffaustausch

[Bearbeiten | Quelltext bearbeiten]

Während im festen Körper eine reine Wärmeleitung mit linearem Temperaturverlauf stattfindet, verläuft der Wärmetransport im Fluid innerhalb einer thermischen Grenzschicht. Bedingt durch die lokale Strömungsgeschwindigkeit, die direkt an der Wand gleich Null sein muss, liegt in Wandnähe zunächst eine Wärmeleitung im Fluid vor, die kontinuierlich durch Mischungsvorgänge überlagert wird, so dass der wandnah lineare Temperaturverlauf in einen nichtlinearen übergeht, und zwar unabhängig davon, in welcher Richtung die Wärme strömt.

Wand mit beidseitiger Konvektion

Das Bild rechts zeigt den Temperaturverlauf in einer festen Wand mit beidseitigem konvektivem Wärmeübergang. In der Wand werden keine Atome bewegt, deshalb liegt dort Wärmeleitung vor.

Die Konvektion wird hier bestimmt durch die „Grenzschicht“, die Schicht zwischen beiden Volumina, in der sich die physikalischen Parameter von denen der beiden Volumina unterscheiden. Die wesentlichen Parameter sind die Temperatur und die Zusammensetzung der Stoffe, sowie die Strömungsgeschwindigkeit. Jeder dieser Parameter bildet eine eigene Grenzschicht. Im Falle der Konvektion zwischen Fluiden ist die Bestimmung der Grenzschichten meistens sehr schwierig bis unmöglich, da sie messtechnisch nicht oder schlecht erfassbar sind und sich oft mit hoher Frequenz ändern.

Der Wärmestrom wird durch die Wärmeübergangszahl α oder die dimensionslose Nusselt-Zahl Nu beschrieben.

Naturgemäß ist bei der freien Konvektion die Richtung der Strömung durch die Gravitation vorgegeben, denn die Strömung wird durch Dichte- und damit Gewichtsunterschiede bewirkt. Für eine optimale Nutzung ist deshalb eine vertikale Ausrichtung der Oberfläche des festen Körpers anzustreben. Bei erzwungener Konvektion dagegen ist die Ausrichtung im Raum beliebig, da die Strömung normalerweise konstruktiv so dimensioniert wird, dass der Anteil der unvermeidbaren freien Konvektion unmaßgeblich ist.

Numerische Simulation der Konvektion über einer horizontalen Platte – Stromfäden …
Gleiches für eine vertikale Platte – vertikale Geschwindigkeitskomponente
… und Temperaturfeld
… und Temperaturfeld

Da sich bei letzterer die den Wärmestrom kennzeichnenden Parameter (Temperaturunterschiede, Dichteunterschiede, Auf-/Abtrieb, Strömungsgeschwindigkeiten) gegenseitig beeinflussen, ist die Bestimmung der Wärmeübertragung von technischen Bauteilen sehr kompliziert. So muss beispielsweise die Leistungsmessung an Raumheizköpern für jeden Typ und jede Größe unter unterschiedlichen Betriebsbedingungen bei fest vorgegebenen Randbedingungen einzeln messtechnisch ermittelt werden. Eine rechnerische Simulation ist dagegen selbst mit heutigen Hochleistungsrechnern noch aufwendiger und vor allem ungenauer.

Der Vorteil der freien Konvektion ist der, dass der Wärmetransport ohne zusätzliche Antriebsenergie und -apparate erfolgt, allerdings gibt die Gravitation Grenzen in der örtlichen Verteilung vor, da die Strömung vorzugsweise vertikal ausgerichtet ist. Nachteilig ist der schlechte Wärmeübergang, der durch große Flächen kompensiert werden muss. Der Wärmetransport mit Fluiden über große Entfernungen ist wegen der thermischen Verluste für beide Arten der Konvektion nachteilig, zum Beispiel bei Fernwärme.


Der Wärmeübergang kann, auch bei freier Konvektion, erheblich effektiver sein, wenn das Fluid im Arbeitstemperaturbereich einen Siedepunkt hat, zum Beispiel der Kondensator einer Kältemaschine (die Rohrschlange außen an der Rückseite eines Haushaltskühlschranks, in der auf der Innenseite das Kältemittel kondensiert). Hinzu kommt der Vorteil, dass der Wärmeübergang auf dieser Seite fast vollständig isotherm verläuft, das heißt die Temperaturdifferenz zur Raumluft im ganzen Rohr nahezu gleich ist.

Konvektion in einer horizontalen Schicht

[Bearbeiten | Quelltext bearbeiten]

Ein über einer geheizten horizontalen Fläche stehendes Fluid (Beispiel: Luft über erwärmter Erdoberfläche, Wasser im Kochtopf) überströmt die Fläche bei sehr geringem Temperaturunterschied und fehlenden äußeren Einflüssen nicht. Es findet nur Wärmeleitung und Wärmediffusion statt. Bei höherem Temperaturunterschied bilden sich Konvektionsströmungen in Form rollenförmiger oder sechseckiger Strukturen, die Konvektionszellen oder Bénard-Zellen. Bei weiter steigendem Temperaturunterschied werden die Strukturen turbulent, siehe Granulation (Astronomie).

Konvektion mit Stoffaustausch

[Bearbeiten | Quelltext bearbeiten]

In vielen Fällen treten sowohl Temperatur- als auch Konzentrationsgradienten auf. Dies führt dazu, dass zum Wärmeaustausch ein Stoffaustausch hinzukommt, das heißt dass hier auch eine Angleichung der Stoffzusammensetzung erfolgt. Natürliche Konvektion kann in diesem Fall auch dadurch entstehen, dass infolge des Stofftransports das Fluid seine Dichte verändert und damit den Auf- bzw. Abtrieb erhält, wenn die Temperaturdifferenz dazu zu gering ist.

Stoff- und Wärmetransport folgen den in etwa gleichen Gesetzmäßigkeiten, was als die „Analogie zwischen Wärme- und Stoffaustausch“ bezeichnet wird. Dies drückt sich auch in der mathematischen Beschreibung aus: der Wärmetransport wird durch das Fouriersche, der Stofftransport durch das Ficksche Gesetz beschrieben, die formal gleich sind, sich lediglich durch die Variablen Temperatur beziehungsweise Konzentration und die jeweiligen Übergangswiderstände unterscheiden.

Überströmt ein Fluid einen Feststoff oder ein Stoffgemisch mit einem niedrigeren Sättigungsdampf- oder Sublimationsdruck, so führt dies zu einem Stoffaustausch, indem der Stoff, dessen Dampf- oder Sublimationsdruck überschritten wird, in das Fluid diffundiert (Beispiel: Trocknung). Dazu ist eine Temperaturdifferenz nicht unbedingt erforderlich, aber förderlich. Diese stellt sich in der Regel schon dadurch ein, dass der Stoff, der verdampft oder sublimiert wird, die Verdampfungswärme seiner eigenen festen oder flüssigen Phase entzieht und diese damit abkühlt, was jedoch auch schon bei einer Verdunstung der Fall ist (siehe Siedekühlung).

Bei nicht miteinander mischbaren Flüssigkeiten, beispielsweise Wasser und Öl, sind die Vorgänge bei geringen Strömungsgeschwindigkeitsdifferenzen mit denen an einer festen Wand vergleichbar, bei höheren kann eine Tropfenbildung auftreten, die zu einer Emulsion führt. Diese wiederum führt zu einer erhöhten Wärmeübertragung infolge einer Vergrößerung der Grenzflächen an den Tropfen.

Sind beide Fluide miteinander mischbar, wie das bei Gasen immer der Fall ist, so gibt es keine Grenzfläche, die die Grenzschicht stabilisieren könnte. Ein typischer Fall ist eine Flamme, beispielsweise einer Kerze oder eines Feuerzeugs. Bedingt durch die Konvektion der aufströmenden Gase strömt ihre eigene Verbrennungsluft aufgrund des erzeugten Unterdrucks von unten nach. Vom Flammenkern nach außen entsteht ein starkes Temperaturgefälle, durch das die Flammgase aufsteigen, die umgebende Luft „ansaugen“ und nach oben „mitführen“. Schon bei relativ geringen Strömungsgeschwindigkeitsdifferenzen findet Verwirbelung und daraus folgend eine Vermischung statt.

Große Dichteunterschiede von Gasen können eine Grenzschicht trotz eines großen Temperaturgefälles stabilisieren, so haben etwa die Schwefelsäurewolken der Venus eine meist strukturlose Oberfläche und Leiterplatten tauchen beim Dampfphasenlöten sichtbar in den heißen Galden™-Dampf ein.

Konvektion aufgrund eines Gradienten der Oberflächenspannung (Marangoni-Konvektion)

[Bearbeiten | Quelltext bearbeiten]
Der Marangoni-Effekt verursacht die Weintränen, die hier im Schatten des Weinglases gut zu erkennen sind.

Als Marangoni-Konvektion bezeichnet man eine Strömung, die durch den Gradienten der Grenzflächenspannung entsteht. Ursache für die unterschiedliche Grenzflächenspannung können z.B. ein Temperaturgefälle oder Konzentrationsgefälle gelöster Stoffe entlang der Grenzfläche sein. Das Fluid strömt dabei entlang der Grenzfläche in Richtung der größeren Spannung. Als Kennzahl zur Charakterisierung der Marangoni-Konvektion eignet sich die Marangoni-Zahl, welche sich als das Verhältnis von Grenzflächenspannung zur Viskosität verstehen lässt.

Beobachten lässt sich die Marangoni-Konvektion, wenn kleine Rußpartikel im flüssigen Wachs einer Kerze schwimmen. In der Nähe der Flamme ist die Oberfläche des flüssigen Wachses heißer als weiter außen am Rand der Kerze. Da im Allgemeinen die Grenzflächenspannung mit steigender Temperatur abnimmt, ist die Grenzflächenspannung dicht an der Flamme geringer als am Rand der Kerze. Dadurch wird die Flüssigkeit nach außen gerissen und nimmt oberflächennahes Wachs mit, das dadurch zu einer Kreisbewegung angetrieben wird. Diese wird durch die Rußpartikel sichtbar. Ein weiteres bekanntes Beispiel sind die sogenannten „Tränen“ an der Innenwand eines mit Wein gefüllten Glases. Aufgrund der Adhäsion kriecht ein dünner Flüssigkeitsfilm an der Glasoberfläche hoch. Da Alkohol schneller verdunstet als Wasser, wird nach oben hin die Alkoholkonzentration geringer und dadurch die Oberflächenspannung größer, weitere Flüssigkeit strömt nach, bis die Schwerkraft überwiegt. Herablaufende Flüssigkeit mit hoher Oberflächenspannung zieht sich beim Durchqueren der Zone mit geringer Oberflächenspannung zu schmalen Rinnsalen zusammen.

Für industrielle Anwendungen besonders relevant ist die Marangoni-Konvektion in Prozessen mit hohen Gradienten wie z. B. bei der Halbleiterherstellung oder beim Schweißen.

Der Marangoni-Effekt spielt eine maßgebliche Rolle bei der Stabilisierung von flüssigen Schäumen. Hierbei bewirkt der durch eine Störung der Schaumfilmoberfläche induzierte Gradient der Oberflächenspannung einen die Störung heilenden, konvektiven Strom der interlamellaren Flüssigkeit.

Gebäudetechnik

[Bearbeiten | Quelltext bearbeiten]
Prinzip der Schwerkraftzirkulation

In einem geschlossenen System kann die Konvektion auch eine kontinuierliche Strömung bewirken, die Schwerkraftzirkulation. Dabei strömt eine erwärmtes Fluid auf einer Seite nach oben und das abgekühlte Fluid auf der anderen Seite nach unten. Dieses Prinzip wird bei der Schwerkraftheizung angewendet, die allerdings fast vollständig durch die Pumpenheizung ersetzt wurde. Es wird auch im so genannten "Badestrang" angewendet, der ohne Pumpe parallel zur Warmwasserleitung verläuft und ganzjährig ein warmes Badezimmer bereitstellt.

In Thermosiphonanlagen wird die Wärme über den Sonnenkollektor zugeführt, wo unter nachfolgender Abkühlung und/oder Entnahme des Wassers die Zirkulation einsetzt.

Im Kesselbau führen besondere Leitblechkonstruktionen zur Zirkulation des Kesselwassers zwischen der Kesselwand und den Nachschaltheizflächen. Damit erreicht man eine gleichmäßige Temperaturverteilung im Kesselmaterial, infolgedessen sich die Wärmespannungen verringern.

Nicht erwünscht ist die Schwerkraftzirkulation als „Rückzirkulation“. Diese tritt beispielsweise auf, wenn bei stillstehender Pumpe das Wasser des Rücklaufs in entgegengesetzter Richtung auf die Pumpe drückt und diese in Bewegung versetzt. Betroffen sind davon Pumpenheizungsanlagen und Solarkreisläufe. Um die Pumpen zu schützen, baut man so genannte Schwerkraftbremsen. Das sind Rückschlagventile oder so genannte „Diskoscheiben“ die - vor oder hinter die Pumpe eingebaut - den Rückstrom des Wassers unterbinden.


Meeresströmung

[Bearbeiten | Quelltext bearbeiten]

In polaren Regionen des Meeres gefriert Wasser zu einer Eisdecke. Das im Meerwasser enthaltene Meersalz verbleibt im Wasser unter dem Eis, wodurch sich in diesem Bereich die Salzkonzentration erhöht. Dieses höher konzentrierte Salzwasser hat eine höhere Dichte und sinkt in Bereiche ab, in welchen das vorhandene Meerwasser infolge niedrigerer Temperatur die gleiche Dichte aufweist. Das unten verdrängte Wasser strömt hinauf bis unter die Eisdecke und der Vorgang beginnt erneut. Es entsteht eine thermohaline Konvektion bzw. thermohaline Zirkulation.[3]


Energiegewinnung

[Bearbeiten | Quelltext bearbeiten]

siehe Aufwindkraftwerk

Land-See-Windsystem
A Seewind
B Landwind

In der Erdatmosphäre finden ebenfalls zahlreiche Konvektionsvorgänge statt.[4] In Küstennähe findet man das Land-See-Windsystem. Da sich die Landmasse schneller aufheizt bzw. abkühlt, kommt es über dem Land zu stärkeren tageszeitlichen Schwankungen als über dem Wasser. Daraus resultiert, dass sich die Luft tagsüber über dem Land stärker erwärmt, dort aufsteigt (A) und kühlere Luft vom Meer her nachfließt. Nachts wiederum kühlt die Luft über dem Land stärker ab, d.h. sie sinkt dort zu Boden (B) und strömt auf das Meer hinaus, wo sie wieder erwärmt wird und aufsteigt.

Auch auf der Erdoberfläche kommt es aufgrund von Geländeformen und verschiedenen Oberflächen zu unterschiedlich starken Aufheizvorgängen. Warme Luftmassen lösen sich ab und steigen in Form von Thermik auf. Unterstützt werden können solche Luftbewegungen durch Kondensationsvorgänge, die die aufsteigende Luft aufheizen, indem sie latente Wärme freisetzen, und damit die Aufwärtsbewegung beschleunigen.

Weitere Beispiele

[Bearbeiten | Quelltext bearbeiten]

Freie Konvektion

[Bearbeiten | Quelltext bearbeiten]
  • Golfstrom: Aus der Karibik wird warmes Oberflächenwasser zunächst entlang der Ostküste der USA, dann weiter in nord-östlicher Richtung quer über den Atlantik an Irland vorbei transportiert. Durch Verdunstungsverluste und die damit verbundene Erhöhung der Salzkonzentration wird das Wasser spezifisch schwerer und sinkt bei Island in die Tiefe. Ohne diese „Warmwasserheizung“ wären die Temperaturen in Europa so niedrig wie in Mittelkanada.
  • Die Erdatmosphäre und die Ozeane beziehungsweise Meere bilden ein System freier Konvektion mit einem Zweiphasensystem Luft/Wasser, mit Verdampfung/Kondensation und Mischung/Entmischung (Wolken/Regen) sowie Wärmequellen (solar erwärmte Flächen auf dem Festland und den Meeren) und Wärmesenken (der Sonne abgewandten Seite der Erde und polnahe Regionen), Zirkulation. Luft wird am warmen Erdboden erwärmt und steigt nach oben, ein entscheidender Faktor für die Entstehung von Wind, Wolken und Gewittern. Großräumiger horizontaler Wärmetransport wird auch als Advektion bezeichnet.
  • In der temperaturbedingten Dichteschichtung von Seen kommt es zu Zeiten der Abkühlung an der Oberfläche (nachts und im Herbst) zu vertikalen Konvektionsströmungen zwischen oberen und unteren Wasserschichten.
  • Im Inneren der Erde sind Gesteine bedingt fließfähig und transportieren über einen langen Zeitraum hinweg Wärme. Auch der Erdmantel und der äußere Erdkern bilden, bei der Betrachtung über erdgeschichtliche Zeiträume hinweg, Konvektionssysteme. Diese sind die Ursache für die Plattentektonik und damit für Erdbeben und Vulkane. Man spricht von einer Mantelkonvektion durch die so genannten Plumes. Im äußeren Kern erzeugt die Konvektion der flüssigen Eisenlegierung das Erdmagnetfeld.
  • In Sternen und erkaltenden Planeten transportiert Konvektion thermische Energie aus dem Inneren nach außen.
  • Die körnige Struktur der Sonnenoberfläche entsteht durch auf- und absteigendes Material in den äußeren Bereichen der Sonne. Heißeres und heller leuchtendes Material steigt in den Granulen auf, gibt Wärme als Strahlung ab und sinkt in den dunkleren Zonen zwischen den Granulen wieder ab. Im Gegensatz dazu sind die Sonnenflecken und Protuberanzen ein magnetisches Phänomen.
  • Wird der Heizkessel einer Zentralheizung am tiefsten Punkt des Heizungssystems installiert, kann dieses ohne Umwälzpumpe arbeiten (Schwerkraftheizung). Das warme Wasser steigt durch Konvektion nach oben in die Heizkörper, kühlt sich dort ab und fließt wieder nach unten.
  • An der Außenseite von Heizkörpern, Fußbodenheizungen und anderen Bauteilen tritt freie Konvektion der Luft auf: Luft dehnt sich durch Erwärmung aus und drängt durch den erhöhten statischen Auftrieb nach oben. Von unten strömt die kühlere Luft über den Boden und den Wänden nach.
  • Solarturm, Aufwindkraftwerk: Gewinnung von elektrischer Energie aus freier Konvektionsströmung.
  • Beim Segelflug wird Flugenergie u. a. aus thermischem Aufwind, der so genannten Thermik gewonnen.
  • Im Kamin (Schornstein) stellt die Konvektion sicher, dass die heißen Verbrennungsabgase durch den Auftrieb immer nach außen abgeführt werden (Kamineffekt). Der Kamin muss so dimensioniert sein, dass trotz Wärmeabgabe über die Innenwand eine ausreichende Auftriebsströmung erhalten bleibt. Das wird durch entsprechende Höhe und geeignete Durchmesser erreicht.
  • In Wohnhäusern sorgt der Effekt der Fugenlüftung dafür, dass warme Luft durch obere Fugen entweicht und kalte Luft durch untere Spalten nachströmt.
  • Wäschetrocknung an der Leine: wie Haartrocknung, jedoch freie Konvektion (Verdunstung kühlt, Luft strömt abwärts)
  • Wird ein Kühlschrank geöffnet, strömt kalte Luft unten heraus. Im oberen Teil der Türöffnung strömt im Gegenzug warme Luft hinein.
  • Mit einem Wärmerohr können mit geringem Aufwand und auf kleinem Raum große Energiemengen transportiert werden. Effektive Kühlungen sind hiermit möglich.
  • Eine dünne Schicht eines nematischen Flüssigkristalls wird mit einem Temperaturfeld oder einem elektrischen Feld beaufschlagt. Unter geeigneten Bedingungen stellt sich eine durch das Temperaturfeld oder das elektrische Feld (elektrische Konvektion) angetriebene Konvektionströmung ein. Bei mittlerer Stärke des Feldes bilden sich Konvektionswalzen in der anisotropen Schicht, bei hoher Stärke des Feldes lösen sich die Muster durch den Übergang in turbulente Strömungen auf.[5]
  • Bei der Züchtung von Einkristallen aus Metalllegierungen kann das gewünschte gleichmäßige Kristallwachstum beim Erstarren der Schmelze durch konvektive Vorgänge gestört, aber auch bewusst beeinflusst werden. Diese Vorgänge sind neben der natürlichen Konvektion (thermisch und infolge von Konzentrationsunterschieden) auch die Marangoni-Konvektion (Schmelze fließt in Richtung hoher Oberflächenspannung) und bei induktiver Heizung oder anderen bewegten Magnetfeldern auch eine elektromagnetische Konvektion.[6]

Erzwungene Konvektion

[Bearbeiten | Quelltext bearbeiten]
  • Kühlung von Computer-Prozessoren mit Lüfter.
  • Bei der Haartrocknung mit dem Föhn wird durch ein Gebläse Konvektion erzwungen.
  • Warmwasserheizung: Hier sorgen Umwälzpumpen für eine Verteilung des Warmwassers auch in die entfernten Komponenten der Heizungsanlage.
  • Die Spulen von Großgeneratoren müssen gekühlt werden. Die Spulen im Stator werden mit Wasser gekühlt. Die Spulen im Rotor dagegen mit Wasserstoff, der durch das Generatorgehäuse unter einem Druck von bis zu 10 bar zirkuliert und seine Wärme in einem nachgeschalteten Wärmeübertrager abgibt.
  • Ein Schwimmer gleitet durch kühles Wasser. Das Wasser überströmt den Körper entgegen der Fortbewegungsrichtung. Die Schwimmzüge der Arme und Beine führen zu zusätzlichen Strömungen relativ zu diesen Körperteilen. Es treten ungleichmäßige laminare und turbulente Strömungen auf. Die Abgabe von Wärmeenergie an das Wasser ist vor allem beeinflusst von der Körpertemperatur, der Erwärmung durch Stoffwechsel (exotherme chemische Reaktion), dem leitungsartigen und konvektiven Transport der Wärme im Körper und dem Wärmeaustausch mit und -transport in dem Wasser. Die Schwimmzüge tauschen infolge Reibung und Druckdifferenzen Impuls zwischen Wasser und Körper aus. Die Reibung des Wassers in der Grenzschicht zur Körperoberfläche produziert Wärmeenergie und Entropie und verringert so die Wärmeabgabe des Körpers geringfügig. Daneben treten konvektive Vorgänge auch zwischen Körper und Luft (einschließlich Atmung und Verdunstung) auf.
  • Michael Jischka: Konvektiver Impuls-, Wärme- und Stoffaustausch. Vieweg, Braunschweig; Wiesbaden 1982, ISBN 3-528-08144-9.
  • Ulrich Kilian, Christine Weber [Red.].: Lexikon der Physik in sechs Bänden. Band 3. Spektrum, Akademischer Verlag, Heidelberg 1999, ISBN 3-86025-293-3.
Wiktionary: Ikosaeder/Konvektion – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Konvektion – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. techniklexikon.net: Erzwungene Konvektion. Abgerufen am 28. Juni 2011.
  2. GeoDZ: Konvektion. Abgerufen am 28. Juni 2011.
  3. Thermohaline Konvektion (Memento vom 11. Juni 2008 im Internet Archive) Britta Weber, 10. Februar 1997 Gestaltet im Rahmen des Projektes ENGL/EMIR (Prof. W. Hassenpflug / W. D. John), Universität Kiel
  4. Meteomedia: Lexikon. Abgerufen am 28. Juni 2011.
  5. Ingo Rehberg: Musterbildung in hydrodynamischen Systemen, Universität Bayreuth, (PDF-Datei; 3,3 MB)
  6. Holger Bitterlich: Züchtung und physikalische Eigenschaften von Seltenerd-Übergangsmetall-Einkristallen, Dissertation, Technische Universität Dresden, 2000, (PDF-Datei; 3,7 MB)

<nowiki>


Kategorie:Strömungslehre Kategorie:Heiztechnik Kategorie:Meteorologie Kategorie:Thermodynamik Kategorie:Astrophysikalischer Prozess </nowiki